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Introduction
» Problem Setup

« Multiple object tracking and segmentation.
* Requires detecting, tracking and segmenting all interested objects
In a video.

» Motivation

* The temporal dimension carries rich scene information while most
previous methods are tracking by detection, which only exploit the
temporal information to address the object association problem.
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Previous MOTS paradigm (a): Temporal information
Is limited to the object association phase.
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Previous MOTS paradigm (b): temporal modeling is
only between two adjacent frames.
« Design an effective and efficient modeling for temporal information,
which can be also used to improve temporal segmentation result.

Contribution

* Prototypical Cross-Attention Module (PCAM) for efficiently utilizing
long-term spatio-temporal video information.

* An online MOTS approach Prototypical Cross-Attention Network
(PCAN) that employs PCAM on frame and instance-level.

* The appearance of each video tracklet is encoded with contrastive
foreground and background prototypes, which are propagated over
time and updated recurrently.

* We extensively analyze our method on BDD100K and Youtube-VIS.
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Prototypical Cross-Attention Network (PCAN)

« PCAN first condenses the space-time memory and high-resolution frame embedding

into frame-level and instance-level prototypes.

* Prototypical cross-attention is employed to retrieve rich temporal information.
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PCAN at Frame-Level

« Past frames are first reduced to sets of prototypes by GMM-based clustering.
« Then the current frame reconstructs and aligns temporal past frame features.
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PCAN at Instance-Level

« Video tracklets are encoded by contrastive foreground and background prototypes.
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« Then instance prototypes are propagating and updating over time.
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Visualization of Sampled Prototypes

» Frame-level Attention
* Frame prototypes learn to correspond to semantic concepts of the whole image.
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» Instance-level Attention
« Each instance prototype focuses on specific car sub-regions (foreground and
background) with implicit unsupervised temporal consistency over time.
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Experiment Results
PCAN achieves consistent large performance gain on BDD100K and Youtube-VIS.
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