

香港科技大學 THE HONG KONG TECHNOLOGY

Highlight

- **BCNet:** Two/one-stage (detect-then-segment) instance segmentation with state-of-the-art performance on three large-scale benchmarks (COCO, KINS, COCOA).
- Novelty: Explicit occlusion modeling in Rol with bilayer decoupling for the occluder and occludee.
- **Efficacy:** Large improvement using the FCOS (anchor-free) and Faster R-CNN (anchor-based) detectors.
- **Simple**: Small additional computation burden and easy to use.

Introduction

- **Motivation:** 1) A lot of segmentation errors are caused by overlapping objects, especially for object instances belonging to the same class. 2) Most existing improvements come from better backbone designs, with little attention paid in the instance mask regression after Rol extraction.
- **Solution**: We propose Bilayer Convolutional Network (**BCNet**) for object contour and mask regression, which explicitly decouples overlapping objects in the same Rol into two separate image layers - top layer handles the occluders and bottom layer for the occludee.

(a) Mask R-CNN

(f) Cascade MR-CNN

(b) PANet

(g) TensorMask

(c) MS R-CNN

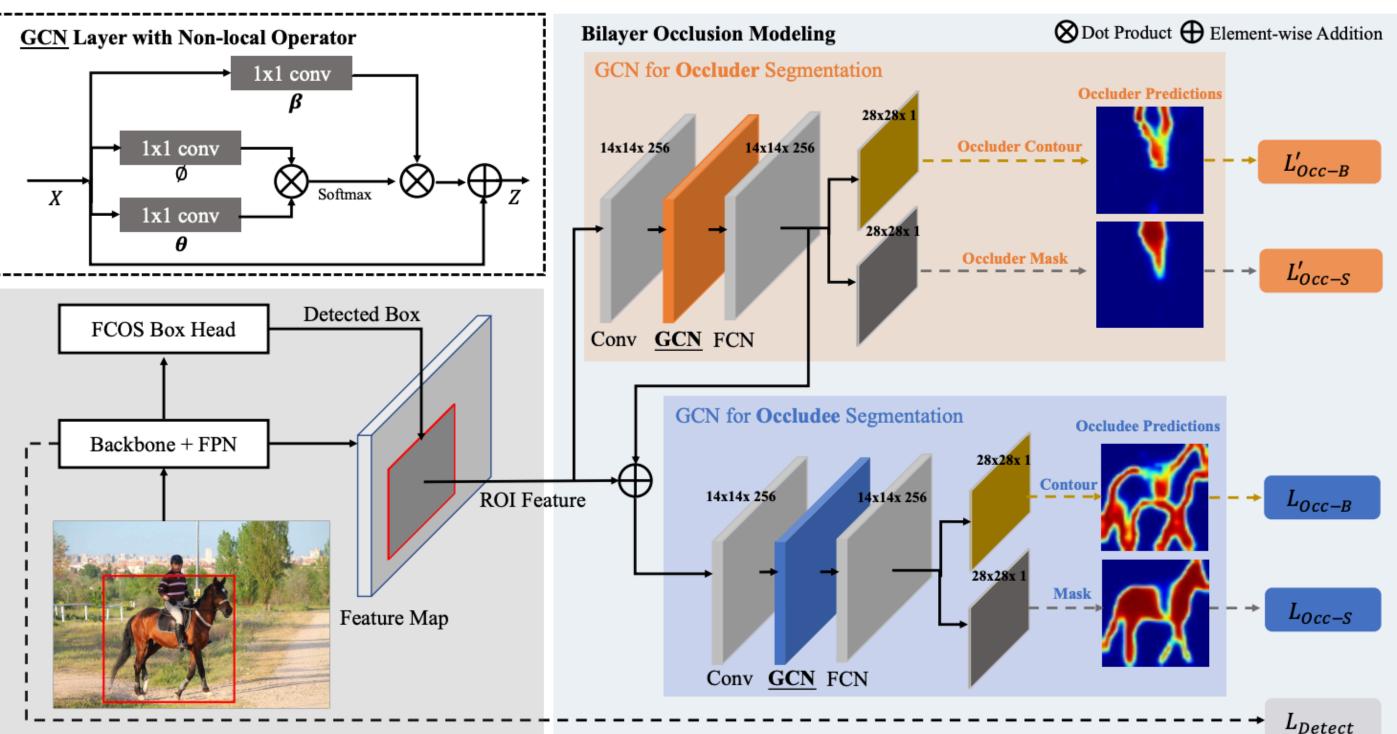
(h) CenterMask

(d) ASN

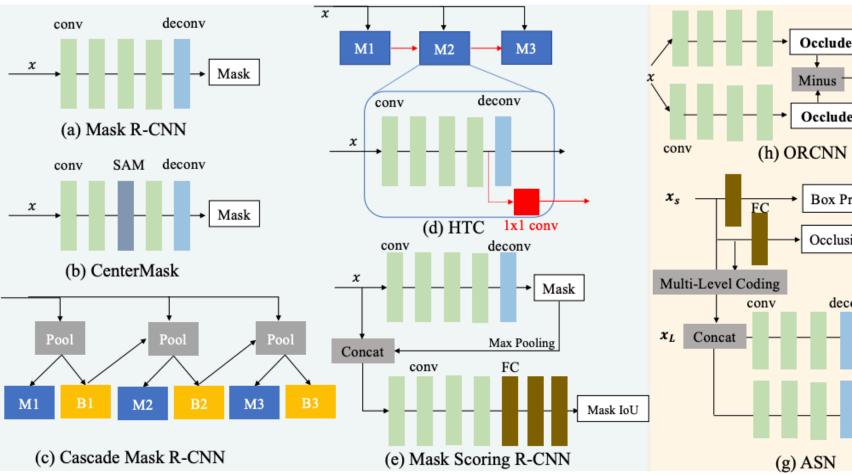
(i) HTC

Deep Occlusion-Aware Instance Segmentation with Overlapping BiLayer

Lei Ke¹, Yu-Wing Tai², Chi-Keung Tang¹ ¹ HKUST, ² Kuaishou Technology https://github.com/lkeab/BCNet


BCNet Framework

(e) Occlusion R-CNN

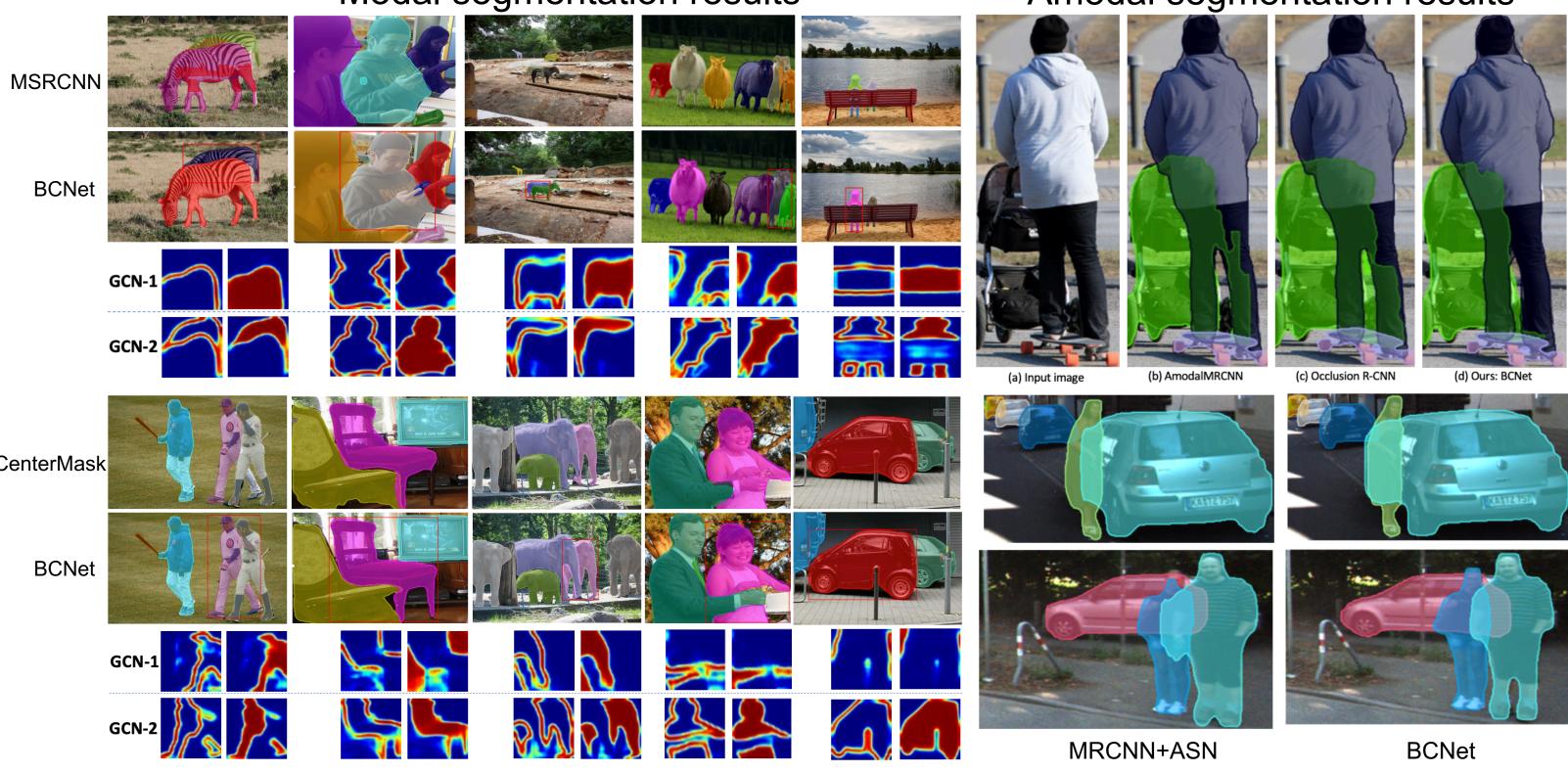


(j) Ours: BCNet

Bilayer GCN structure: For cropped ROI feature, the first GCN explicitly models occluders by simultaneously detecting occlusion contours and masks which distills essential shape and position information to guide the second GCN in mask prediction for the occludee (target object).

Comparison of Mask Head Design The previous occlusion-aware mask heads only regress both modal and amodal masks from the occludee w/o occluder-occludee interaction. Occludee Modal Mask Iterative Amodal Segmentation -----. CenterMask Occlusion Classificatio BCNet ---------

Ablation experiments on bilayer structure Table 1. Effect of the first GCN for occlusion modeling by predict ing contours and masks on COCO with ResNet-50-FPN model


Occlusion (Occluder) Modeling			D-OCC	COCO		
Contour	Mask	AP	AP_{50}	AP	AP_{50}	
		29.04	49.22	32.65	52.39	
	\checkmark	29.65	49.42	33.25	52.82	
\checkmark		30.18	49.94	33.41	53.02	
\checkmark	\checkmark	30.37	50.40	33.43	53.12	

Comparison with SOTA methods on COCO test-dev set, KINS, COCOA.

Coop toot dov											
BCNet + FCOS [51]	ResNet-101	39.6	61.2	42.7	22.3	42.3	51.0	BCNet	23.09 22	2.72	9.53
BlendMask [6]	ResNet-101	38.4	60.7	41.3	18.2	41.5	53.3			i	
CenterMask [33]	ResNet-101	38.3	-	-	17.7	40.8	54.5			0.63	7.8
ShapeMask [31]	ResNet-101	37.4	58.1	40.0	16.1	40.1	53.8		21.51 21	1.09	9.0
TensorMask [9]	ResNet-101	37.1	59.3	39.4	17.4	39.1	51.6	AmodalMask [65]	5.7 5.7	5.9	0.3
YOLACT [4]	ResNet-101	31.2	50.6	32.8	12.1	33.3	47.1	Model	$AP_{all} \mid A$	AP_t	AI
BCNet + Faster R-CNN [48]	ResNet-101	39.8	61.5	43.1	22.7	42.4	51.1			<u> </u>	
HTC [7]	ResNet-101	39.7	61.8	43.1	21.0	42.2	53.5	KINS			
BMask R-CNN [13]	ResNet-101	37.7	59.3	40.6	16.8	39.9	54.6		I	21.	50
Mask Scoring R-CNN [25]	ResNet-101	38.3	58.8	41.5	17.8	40.4	54.4	BCNet	28.87	27.	30
MaskLab [8]	ResNet-101	37.3	59.8	39.6	19.1	40.5	50.6	PANet + ASN [46]	28.41	26.	81
Mask R-CNN [21]	ResNet-101	37.0	59.2	39.5	17.1	39.3	52.9	PANet [42]	PANet [42] 27.39		.99
BCNet + Faster R-CNN [48]	ResNet-50	38.4	59.6	41.5	21.9	40.9	49.3	Mask R-CNN + ASN [46]	27.86 25.62		
PANet [42]	ResNet-50	36.6	58.0	39.3	16.3	38.1	52.4	Mask R-CNN [16]	Mask R-CNN [16] 26.97		.93
Mask R-CNN [21]	ResNet-50	35.6	57.6	38.1	18.7	38.3	46.6				
Method	Backbone	AP	AP_{50}	AP_{75}	$ AP_S $	AP_M	AP_L	Model	$ AP_{Det} $	AP	,

Coco-test-dev

Modal segmentation results

Experimental Results

Table 2. Effect of the second GCN for detecting occludee contours for final mask prediction guided by the output of first GCN.

Target (Oc		D-OCC	COCO			
Guidance	Contour	Mask	AP	AP_{50}	AP	AP_{50}
		✓	29.45	49.73 50.40	32.56	52.21
\checkmark		\checkmark	30.37	50.40	33.43	53.12
\checkmark	\checkmark	✓	30.68	50.62	33.62	53.26

COCOA

• Visual comparison. Heatmaps denote contour and mask predictions respectively.

Amodal segmentation results